Motoneuron survival is enhanced in the absence of neuromuscular junction formation in embryos.
نویسندگان
چکیده
Approximately half of the motoneurons produced during development die before birth or shortly after birth. Although it is believed that survival depends on a restricted supply of a trophic sustenance produced by the synaptic target tissue (i.e., muscle), it is unclear whether synapse formation per se is involved in motoneuron survival. To address this issue, we counted cranial motoneurons in a set of mutant mice in which formation of neuromuscular junctions is dramatically impaired (i.e., null mutants for agrin, nerve-derived agrin, rapsyn, and MuSK). We demonstrate that in the absence of synaptogenesis, there is an 18-34% increase in motoneuron survival in the facial, trochlear, trigeminal motor, and hypoglossal nuclei; the highest survival occurred in the MuSK-deficient animals in which synapse formation is most severely compromised. There was no change in the size of the mutant motoneurons as compared with control animals, and the morphology of the mutant motoneurons appeared normal. We postulate that the increased axonal branching observed in these mutants leads to a facilitated "access" of the motoneurons to muscle-derived trophic factors at sites other than synapses or that inactivity increases the production of such factors. Finally, we examined motoneurons in double mutants of CNTFRalpha(-/-) (in which there is a partial loss of motoneurons) and MuSK(-/-) (in which there is an increased survival of motoneurons). The motoneuron numbers in the double mutants parallel those of the single MuSK-deficient mice, indicating that synapse disruption can even overcome the deleterious effect of CNTFRalpha ablation.
منابع مشابه
Cell death of motoneurons in the chick embryo spinal cord. XI. Acetylcholine receptors and synaptogenesis in skeletal muscle following the reduction of motoneuron death by neuromuscular blockade.
Treatment of chick embryos with neuromuscular blocking agents such as curare during periods of naturally occurring motoneuron death results in a striking reduction of this normal cell loss. Inactivity-induced changes in motoneuron survival were found to be associated with increased levels of AChRs and AChR-clusters in skeletal muscle and with increased focal sites of AChE that are innervated ('...
متن کاملTemporal requirement for SMN in motoneuron development.
Proper function of the motor unit is dependent upon the correct development of dendrites and axons. The infant/childhood onset motoneuron disease spinal muscular atrophy (SMA), caused by low levels of the survival motor neuron (SMN) protein, is characterized by muscle denervation and paralysis. Although different SMA models have shown neuromuscular junction defects and/or motor axon defects, a ...
متن کاملA compartmentalized microfluidic neuromuscular co-culture system reveals spatial aspects of GDNF functions
Bidirectional molecular communication between the motoneuron and the muscle is vital for neuromuscular junction (NMJ) formation and maintenance. The molecular mechanisms underlying such communication are of keen interest and could provide new targets for intervention in motoneuron disease. Here, we developed a microfluidic platform with motoneuron cell bodies on one side and muscle cells on the...
متن کاملSupplemental Information Distinct Roles of Muscle and Motoneuron LRP4 in Neuromuscular Junction Formation
متن کامل
Axonal guidance and the development of muscle fiber-specific innervation in Drosophila embryos.
The outgrowth of peripheral nerves and the development of muscle fiber-specific neuromuscular junctions were examined in Drosophila embryos using immunocytochemistry and computer-enhanced digital optical microscopy. We find that the pioneering of the peripheral nerves and the formation of the neuromuscular junctions occur through a precisely orchestrated sequence of stereotyped axonal trajector...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 21 9 شماره
صفحات -
تاریخ انتشار 2001